A comparison of bootstrap approaches for estimating uncertainty of parameters in linear mixed-effects models.
نویسندگان
چکیده
A version of the nonparametric bootstrap, which resamples the entire subjects from original data, called the case bootstrap, has been increasingly used for estimating uncertainty of parameters in mixed-effects models. It is usually applied to obtain more robust estimates of the parameters and more realistic confidence intervals (CIs). Alternative bootstrap methods, such as residual bootstrap and parametric bootstrap that resample both random effects and residuals, have been proposed to better take into account the hierarchical structure of multi-level and longitudinal data. However, few studies have been performed to compare these different approaches. In this study, we used simulation to evaluate bootstrap methods proposed for linear mixed-effect models. We also compared the results obtained by maximum likelihood (ML) and restricted maximum likelihood (REML). Our simulation studies evidenced the good performance of the case bootstrap as well as the bootstraps of both random effects and residuals. On the other hand, the bootstrap methods that resample only the residuals and the bootstraps combining case and residuals performed poorly. REML and ML provided similar bootstrap estimates of uncertainty, but there was slightly more bias and poorer coverage rate for variance parameters with ML in the sparse design. We applied the proposed methods to a real dataset from a study investigating the natural evolution of Parkinson's disease and were able to confirm that the methods provide plausible estimates of uncertainty. Given that most real-life datasets tend to exhibit heterogeneity in sampling schedules, the residual bootstraps would be expected to perform better than the case bootstrap.
منابع مشابه
Comparison of Performance of GLM, RF and DL Models in Estimation of Reference Evapotranspiration in Zabol Synoptic Station
Evapotranspiration is one of the most important components of the hydrology cycle for planning irrigation systems and assessing the impacts of climate change hydrology and correct determination is important for many studies such as hydrological balance of water, design of irrigation irrigation networks, simulation of crop yields, design, optimization of water resources, nonlinearity, inherent u...
متن کاملStochastic Restricted Two-Parameter Estimator in Linear Mixed Measurement Error Models
In this study, the stochastic restricted and unrestricted two-parameter estimators of fixed and random effects are investigated in the linear mixed measurement error models. For this purpose, the asymptotic properties and then the comparisons under the criterion of mean squared error matrix (MSEM) are derived. Furthermore, the proposed methods are used for estimating the biasing parameters. Fin...
متن کاملThe Application of Recursive Mixed Models for Estimating Genetic and Phenotypic Relationships between Calving Difficulty and Lactation Curve Traits in Iranian Holsteins: A Comparison with Standard Mixed Models
In the present study, records on 22872 first-parity Holsteins collected from 131 herds by the Animal Breeding and Improvement Center of Iran from 1995 to 2014 were considered to estimate genetic and phenotypic relationships between calving difficulty (CD) and the lactation curve traits, including initial milk yield (Ap), ascending (Bp) and descending (Cp) slope of the lactation curves, peak mil...
متن کاملComparing two testing procedures in unbalanced two-way ANOVA models under heteroscedasticity: Approximate degree of freedom and parametric bootstrap approach
The classic F-test is usually used for testing the effects of factors in homoscedastic two-way ANOVA models. However, the assumption of equal cell variances is usually violated in practice. In recent years, several test procedures have been proposed for testing the effects of factors. In this paper, the two methods that are approximate degree of freedom (ADF) and parametric bootstr...
متن کاملEstimating Stock Price in Energy Market Including Oil, Gas, and Coal: The Comparison of Linear and Non-Linear Two-State Markov Regime Switching Models
A common method to study the dynamic behavior of macroeconomic variables is using linear time series models; however, they are unable to explain nonlinear behavior of the series. Given the dependency between stock market and derivatives, the behavior of the underlying asset price can be modeled using Markov switching process properties and the economic regime significance. In this paper, a two-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pharmaceutical statistics
دوره 12 3 شماره
صفحات -
تاریخ انتشار 2013